Chapter 3

Biology and Society: Got Lactose?

- Lactose is the main sugar found in milk.
 - Lactose intolerance is the inability to properly digest lactose.
 - Instead of lactose being broken down and absorbed in the small intestine,
 - lactose is broken down by bacteria in the large intestine, producing gas and discomfort.
- Lactose intolerance can be addressed by
 - avoiding foods with lactose or
 - consuming lactase pills along with food.

ORGANIC COMPOUNDS

- A cell is mostly water.
- The rest of the cell consists mainly of carbon-based molecules.
- Carbon forms large, complex, and diverse molecules necessary for life's functions.
- Organic compounds are carbon-based molecules.

Carbon Chemistry

- Carbon is a versatile atom.
 - It has four electrons in an outer shell that holds eight electrons.
 - Carbon can share its electrons with other atoms to form up to four covalent bonds.

Carbon Chemistry

- Carbon can use its bonds to
 - attach to other carbons and
 - form an endless diversity of carbon skeletons varying in size and branching pattern.
- The simplest organic compounds are hydrocarbons, which contain only carbon and hydrogen atoms.
- The simplest hydrocarbon is methane, a single carbon atom bonded to four hydrogen atoms.
- Larger hydrocarbons form fuels for engines.
- Hydrocarbons of fat molecules are important fuels for our bodies.
- Each type of organic molecule has a unique three-dimensional shape.
- The shapes of organic molecules relate to their functions.
- The unique properties of an organic compound depend on
 - its carbon skeleton and
 - the atoms attached to the skeleton.
- The groups of atoms that usually participate in chemical reactions are called functional groups. Two common examples are
 - hydroxyl groups (-OH) and
 - carboxyl groups (-COOH).
- Many biological molecules have two or more functional groups.

Giant Molecules from Smaller Building Blocks

- On a molecular scale, many of life's molecules are gigantic, earning the name macromolecules.
- Three categories of macromolecules are
 - carbohydrates,

- proteins, and
- nucleic acids.
- Most macromolecules are polymers.
- Polymers are made by stringing together many smaller molecules called monomers.
- A dehydration reaction
 - links two monomers together and
 - removes a molecule of water.

LARGE BIOLOGICAL MOLECULES

- There are four categories of large biological molecules:
 - carbohydrates,
 - lipids,
 - proteins, and
 - nucleic acids.

Carbohydrates

- Carbohydrates include sugars and polymers of sugar. They include
 - small sugar molecules in energy drinks and
 - long starch molecules in spaghetti and French fries.

Carbohydrates

- In animals, carbohydrates are
 - a primary source of dietary energy and
 - raw material for manufacturing other kinds of organic compounds.
- In plants, carbohydrates serve as a building material for much of the plant body. *Monosaccharides*
- Monosaccharides are
 - simple sugars that cannot be broken down by hydrolysis into smaller sugars and
 - the monomers of carbohydrates.
- Common examples are
 - glucose in sports drinks and
 - fructose found in fruit.

Monosaccharides

- Both glucose and fructose are found in honey.
- Glucose and fructose are isomers, molecules that have the same molecular formula but different structures.
- Monosaccharides are the main fuels for cellular work.
- In water, many monosaccharides form rings.

Disaccharides

- A disaccharide is
 - a double sugar,
 - constructed from two monosaccharides, and
 - formed by a dehydration reaction.
- Disaccharides include
 - lactose in milk,
 - maltose in beer, malted milk shakes, and malted milk ball candy, and
 - sucrose in table sugar.
- Sucrose is

- the main carbohydrate in plant sap and
- rarely used as a sweetener in processed foods in the United States.
- High-fructose corn syrup is made by a commercial process that converts
 - natural glucose in corn syrup to
 - much sweeter fructose.
- The United States is one of the world's leading markets for sweeteners.
- The average American consumes
 - about 45 kg of sugar (about 100 lb) per year,
 - mainly as sucrose and high-fructose corn syrup.

Polysaccharides

- Polysaccharides are
 - complex carbohydrates
 - made of long chains of sugar units—polymers of monosaccharides.
- Starch
 - is a familiar example of a polysaccharide,
 - is used by plant cells to store energy, and
 - consists of long strings of glucose monomers.
- Potatoes and grains are major sources of starch in our diet.
- Glycogen is
 - used by animals cells to store energy and
 - converted to glucose when it is needed.
- Cellulose
 - is the most abundant organic compound on Earth,
 - forms cable-like fibrils in the walls that enclose plant cells, and
 - cannot be broken apart by most animals.
- Monosaccharides and disaccharides dissolve readily in water.
- Cellulose does not dissolve in water.
- Almost all carbohydrates are hydrophilic, or "water-loving," adhering water to their surface.

Lipids

- Lipids are
 - neither macromolecules nor polymers and
 - hydrophobic, unable to mix with water.

Fats

- A typical fat, or triglyceride, consists of
 - a glycerol molecule,
 - joined with three fatty acid molecules,
 - via a dehydration reaction.
- Fats perform essential functions in the human body including
 - energy storage,
 - cushioning, and
 - insulation.
- If the carbon skeleton of a fatty acid
 - has fewer than the maximum number of hydrogens, it is unsaturated;
 - if it has the maximum number of hydrogens,
 - it is saturated.

- A saturated fat has
 - no double bonds and
 - all three of its fatty acids saturated.
- Most animal fats
 - have a high proportion of saturated fatty acids,
 - can easily stack, tending to be solid at room temperature, and
 - contribute to atherosclerosis, in which lipid-containing plaques build up along the inside walls of blood vessels.
- Most plant and fish oils tend to be
 - high in unsaturated fatty acids and
 - liquid at room temperature.
- Hydrogenation
 - adds hydrogen,
 - converts unsaturated fats to saturated fats,
 - makes liquid fats solid at room temperature, and
 - creates trans fat, a type of unsaturated fat that is particularly bad for your health.

Steroids

- Steroids are very different from fats in structure and function.
 - The carbon skeleton is bent to form four fused rings.
 - Steroids vary in the functional groups attached to this set of rings, and these chemical variations affect their function.

Steroids

- Cholesterol is
 - a key component of cell membranes and
 - the "base steroid" from which your body produces other steroids, such as estrogen and testosterone.
- Synthetic anabolic steroids
 - are variants of testosterone,
 - mimic some of its effects,
 - can cause serious physical and mental problems,
 - may be prescribed to treat diseases such as cancer and AIDS, and
 - are abused by athletes to enhance performance.
- Most athletic organizations now ban the use of anabolic steroids because of their
 - health hazards and
 - unfairness, by providing an artificial advantage.

Proteins

- Proteins
 - are polymers constructed from amino acid monomers,
 - account for more than 50% of the dry weight of most cells,
 - perform most of the tasks required for life, and
 - form enzymes, chemicals that change the rate of a chemical reaction without being changed in the process.

The Monomers of Proteins: Amino Acids

• All proteins are macromolecules constructed from a common set of 20 kinds of

amino acids.

- Each amino acid consists of a central carbon atom bonded to four covalent partners.
- Three of those attachment groups are common to all amino acids:
 - a carboxyl group (-COOH),
 - an amino group (-NH₂), and
 - a hydrogen atom.

Proteins as Polymers

- Cells link amino acids together
 - by dehydration reactions,
 - forming peptide bonds, and
 - creating long chains of amino acids called polypeptides.
- Your body has tens of thousands of different kinds of protein.
- Proteins differ in their arrangement of amino acids.
- The specific sequence of amino acids in a protein is its primary structure.
- A slight change in the primary structure of a protein affects its ability to function.
- The substitution of one amino acid for another in hemoglobin causes sickle-cell disease, an inherited blood disorder.

Protein Shape

- A functional protein consists of
 - one or more polypeptide chains,
 - precisely twisted, folded, and coiled into a molecule of unique shape.

Protein Shape

- Proteins consisting of one polypeptide have three levels of structure.
- Proteins consisting of more than one polypeptide chain have a fourth level, quaternary structure.
- A protein's three-dimensional shape
 - typically recognizes and binds to another molecule and
 - enables the protein to carry out its specific function in a cell.

What Determines Protein Shape?

- A protein's shape is sensitive to the surrounding environment.
- An unfavorable change in temperature and/or pH can cause denaturation of a protein, in which it unravels and loses its shape.
- High fevers (above 104°F) in humans can cause some proteins to denature.
- Misfolded proteins are associated with
 - Alzheimer's disease,
 - mad cow disease, and
 - Parkinson's disease.

Nucleic Acids

- Nucleic acids are macromolecules that
 - store information,
 - provide the directions for building proteins, and
 - include DNA and RNA.
- DNA resides in cells in long fibers called chromosomes.
- A gene is a specific stretch of DNA that programs the amino acid sequence of a polypeptide.
- The chemical code of DNA must be translated from "nucleic acid language" to

"protein language."

- Nucleic acids are polymers made from monomers called nucleotides.
- Each nucleotide has three parts:
 - a five-carbon sugar,
 - a phosphate group, and
 - a nitrogen-containing base.
- Each DNA nucleotide has one of four possible nitrogenous bases:
 - adenine (A),
 - guanine (G),
 - thymine (T), or
 - cytosine (C).
- Dehydration reactions
 - link nucleotide monomers into long chains called polynucleotides,
 - form covalent bonds between the sugar of one nucleotide and the phosphate of the next, and
 - form a sugar-phosphate backbone.
- Nitrogenous bases hang off the sugar-phosphate backbone.
- RNA, ribonucleic acid, is different from DNA.
 - RNA uses the sugar ribose and the base uracil (U) instead of thymine (T).
 - RNA is usually single-stranded, but DNA usually exists as a double helix.

The Process of Science: Does Lactose Intolerance Have a Genetic Basis?

- Observation: Most lactose-intolerant people have a normal version of the lactase gene.
- Question: What is the genetic basis for lactose intolerance?
- Hypothesis: Lactose-intolerant people have a mutation but not within the lactase gene.
- Prediction: A mutation would be found near the lactase gene.
- Experiment: Genes of 196 lactose-intolerant people were examined.
- Results: Researchers found a 100% correlation between lactose intolerance and a nucleotide at a site approximately 14,000 nucleotides away from the lactase gene.

Evolution Connection: The Evolution of Lactose Intolerance in Humans

- Most people are lactose-intolerant as adults.
- Lactose intolerance is found in
 - 80% of African Americans and Native Americans,
 - 90% of Asian Americans, but
 - only 10% of Americans of northern European descent.
- Lactose tolerance appears to have evolved in northern European cultures that relied upon dairy products.
- Ethnic groups in East Africa that rely upon dairy products are also lactose tolerant but due to different mutations.