Chapter 4
Biology and Society: Antibiotics: Drugs that Target Bacterial Cells

- Antibiotics were first isolated from mold in 1928.
- The widespread use of antibiotics drastically decreased deaths from bacterial infections.
- Most antibiotics kill bacteria while minimally harming the human host by binding to structures found only on bacterial cells.
- Some antibiotics bind to the bacterial ribosome, leaving human ribosomes unaffected.
- Other antibiotics target enzymes found only in the bacterial cells.

THE MICROSCOPIC WORLD OF CELLS

- Organisms are either
 - single-celled, such as most prokaryotes and protists, or
 - multicelled, such as
 - plants,
 - animals, and
 - most fungi.

Microscopes as Windows on the World of Cells

- **Light microscopes** can be used to explore the structures and functions of cells.
- When scientists examine a specimen on a microscope slide,
 - light passes through the specimen and
 - lenses enlarge, or magnify, the image.
- The most powerful electron microscopes can
 - magnify up to 100,000 times and
 - distinguish between objects 0.2 nanometers apart.
- Light microscopes are still very useful for studying living cells.

The Two Major Categories of Cells

- The countless cells on Earth fall into two basic categories:
 - **Prokaryotic cells** — Bacteria and Archaea and
 - **Eukaryotic cells** — protists, plants, fungi, and animals.
- All cells have several basic features.
 - They are all bounded by a thin **plasma membrane**.
 - Inside all cells is a thick, jelly-like fluid called the **cytosol**, in which cellular components are suspended.
 - All cells have one or more **chromosomes** carrying genes made of DNA.
 - All cells have **ribosomes**, tiny structures that build proteins according to the instructions from the DNA.
- Prokaryotic cells are older than eukaryotic cells.
 - Prokaryotes appeared about 3.5 billion years ago.
 - Eukaryotes appeared about 2.1 billion years ago.
- Prokaryotic cells are
 - usually smaller than eukaryotic cells and
simpler in structure.

- **Eukaryotes**
 - Only eukaryotic cells have **organelles**, membrane-enclosed structures that perform specific functions.
 - The most important organelle is the **nucleus**, which
 - houses most of a eukaryotic cell’s DNA and
 - is surrounded by a double membrane.
- A prokaryotic cell lacks a nucleus. Its DNA is coiled into a nucleus-like region called the **nucleoid**, which is not partitioned from the rest of the cell by membranes.

An Overview of Eukaryotic Cells
- Eukaryotic cells are fundamentally similar.
- The region between the nucleus and plasma membrane is the **cytoplasm**.
- The cytoplasm consists of various organelles suspended in the liquid cytosol.
- Unlike animal cells, plant cells have
 - chloroplasts, which convert light energy to the chemical energy of food in the process of photosynthesis, and
 - protective cell walls.
- Only animal cells have lysosomes, bubbles of digestive enzymes surrounded by membranes.

MEMBRANE STRUCTURE
- The plasma membrane separates the living cell from its nonliving surroundings.
- The remarkably thin membranes of cells are composed mostly of
 - lipids and
 - proteins.
- The lipids belong to a special category called **phospholipids**.
- Phospholipids form a two-layered membrane, the **phospholipid bilayer**.

The Process of Science:
What Makes a Superbug?
- Particularly dangerous strains of bacteria, known as MRSA, are unaffected by several common antibiotics.
- **Observation**: Some bacteria use a protein called PSM to disable human immune cells by forming holes that rip apart the plasma membrane.
- **Question**: Does PSM play a role in MRSA infections?
- **Hypothesis**: MRSA bacteria lacking the ability to produce PSM would be less deadly than normal MRSA strains.
- **Experiment**: Researchers infected
 - seven mice with normal MRSA and
 - eight mice with MRSA that does not produce PSM.
- **Results**:
 - All seven mice infected with normal MRSA died.
 - Five of the eight mice infected with MRSA that does not produce PSM
• **Conclusions:**
 – MRSA strains appear to use the membrane-destroying PSM protein, but
 – factors other than PSM protein contributed to the death of mice (possibly other membrane-destroying proteins).

Cell Surfaces

- Plant cells have rigid cell walls surrounding the membrane.
- Plant cell walls
 – are made of cellulose,
 – protect the cells,
 – maintain cell shape, and
 – keep cells from absorbing too much water.
- Animal cells
 – lack cell walls and
 – typically have an *extracellular matrix*, which
 – helps hold cells together in tissues and
 – protects and supports them.
- The surfaces of most animal cells contain *cell junctions*, structures that connect cells together into tissues, allowing them to function in a coordinated way.

THE NUCLEUS AND RIBOSOMES: GENETIC CONTROL OF THE CELL

- The nucleus is the chief executive of the cell.
 – Genes in the nucleus store information necessary to produce proteins.
 – Proteins do most of the work of the cell.

Structure and Function of the Nucleus

- The nucleus is separated from the cytoplasm by a double membrane called the *nuclear envelope*.
- Pores in the envelope allow materials to move between the nucleus and cytoplasm.
- The nucleus contains a *nucleolus* where ribosomes are made.
- Stored in the nucleus are long DNA molecules and associated proteins that form fibers called *chromatin*.
- Each long chromatin fiber constitutes one chromosome.
- The number of chromatin fibers in a cell depends on the species.

Ribosomes

- **Ribosomes** are responsible for protein synthesis.
- Ribosome components are made in the nucleolus but assembled in the cytoplasm.
- Ribosomes may assemble proteins while the ribosomes are
 – suspended in the fluid of the cytoplasm or
 – attached to the outside of the nucleus or an organelle called the endoplasmic reticulum.
How DNA Directs Protein Production
• DNA programs protein production in the cytoplasm by transferring its coded information into messenger RNA (mRNA).
• Messenger RNA exits the nucleus through pores in the nuclear envelope.
• A ribosome moves along the mRNA, translating the genetic message into a protein with a specific amino acid sequence.

THE ENDOMEMBRANE SYSTEM: MANUFACTURING AND DISTRIBUTING CELLULAR PRODUCTS
• Many membranous organelles forming the endomembrane system in a cell are interconnected either
 – directly by their membranes or
 – by transfer of membrane segments between them.

The Endoplasmic Reticulum
• The endoplasmic reticulum (ER) is one of the main manufacturing facilities in a cell.
• The ER
 – produces an enormous variety of molecules,
 – is connected to the nuclear envelope, and
 – is composed of smooth and rough ER.

Rough ER
• The “rough” in rough ER refers to ribosomes that stud the outside of this portion of the ER membrane.
• These ribosomes produce membrane proteins and secretory proteins.
• Some products manufactured by rough ER are dispatched to other locations in the cell by transport vesicles, sacs made of membrane that bud off from the rough ER.

Smooth ER
• The smooth ER
 – lacks surface ribosomes,
 – produces lipids, including steroids, and
 – helps liver cells detoxify circulating drugs.

The Golgi Apparatus
• The Golgi apparatus
 – works in partnership with the ER and
 – receives, refines, stores, and distributes chemical products of the cell.

Lysosomes
• A lysosome is a membrane-bound sac of digestive enzymes found in animal cells.
• Lysosomes are absent from most plant cells.
• Enzymes in a lysosome can break down large molecules such as
 – proteins,
 – polysaccharides,
 – fats, and
 – nucleic acids.
• Lysosomes have several types of digestive functions.
 – Many cells engulf nutrients in tiny cytoplasmic sacs called food vacuoles.
 – These food vacuoles fuse with lysosomes, exposing food to enzymes to digest the food.
 – Small molecules from digestion leave the lysosome and nourish the cell.
• Lysosomes can also
 – destroy harmful bacteria,
 – break down damaged organelles, and
 – sculpt tissues during embryonic development, helping to form structures such as fingers.

Vacuoles
• Vacuoles are large sacs of membrane that bud from the
 – ER,
 – Golgi apparatus, or
 – plasma membrane.
• Contractile vacuoles of protists pump out excess water in the cell.
• Central vacuoles of plants
 – store organic nutrients,
 – absorb water, and
 – may contain pigments or poisons.

CHLOROPLASTS AND MITOCHONDRIA: ENERGY CONVERSION
• Cells require a continuous energy supply to perform the work of life.
• Two organelles act as cellular power stations:
 • chloroplasts and
 • mitochondria.

Chloroplasts
• Most of the living world runs on the energy provided by photosynthesis.
• Photosynthesis is the conversion of light energy from the sun to the chemical energy of sugar and other organic molecules.
• Chloroplasts are
 – unique to the photosynthetic cells of plants and algae and
 – the organelles that perform photosynthesis.
• Chloroplasts are divided into three major compartments by internal membranes:
 • the space between the two membranes,
 • the stroma, a thick fluid within the chloroplast, and
 • the space within grana, membrane-enclosed discs and tubes that trap light energy and convert it to chemical energy.

Mitochondria
• Mitochondria
 – are the organelles of cellular respiration,
 – are found in almost all eukaryotic cells, and
- produce ATP from the energy of food molecules.
- An envelope of two membranes encloses the mitochondrion:
 - an outer smooth membrane and
 - an inner membrane that
 - has numerous infoldings called crista and
 - encloses a thick fluid called the matrix.
- Mitochondria and chloroplasts contain their own DNA, which encodes some of their proteins.
- This DNA is evidence that mitochondria and chloroplasts evolved from free-living prokaryotes in the distant past.

THE CYTOSKELETON: CELL SHAPE AND MOVEMENT
- The cytoskeleton is a network of fibers extending throughout the cytoplasm.

Maintaining Cell Shape
- The cytoskeleton
 - provides mechanical support to the cell and
 - helps a cell maintain its shape.
- The cytoskeleton contains several types of fibers made from different proteins:
 - Microtubules are straight and hollow tubes that guide the movement of organelles and chromosomes.
 - Intermediate filaments and microfilaments are thinner and solid.
- The cytoskeleton provides anchorage and reinforcement for many organelles.
- The cytoskeleton is dynamic.
- Changes in the cytoskeleton contribute to the amoeboid (crawling) movements of
 - the protist Amoeba and
 - some of our white blood cells.

Cilia and Flagella
- Cilia and flagella are motile appendages that aid in movement.
 - Flagella propel the cell through their undulating, whiplike motion.
 - Cilia move in a coordinated back-and-forth motion.
 - Cilia and flagella have the same basic architecture, but cilia are generally shorter and more numerous than flagella.

Evolution Connection:
The Evolution of Antibiotic Resistance
- Many antibiotics disrupt cellular structures of invading microorganisms.
- Introduced in the 1940s, penicillin worked well against such infections.
- But over time, bacteria that were resistant to antibiotics, such as the MRSA strain, were favored.
- The widespread use and abuse of antibiotics continue to favor bacteria that resist antibiotics.