THE BASICS OF PHOTOSYNTHESIS

- Photosynthesis
 - is used by plants, algae (protists), and some bacteria,
 - transforms light energy into chemical energy, and
 - uses carbon dioxide and water as starting materials.
- The chemical energy produced via photosynthesis is stored in the bonds of sugar molecules.
- Organisms that use photosynthesis are
 - photosynthetic autotrophs and
 - the producers for most ecosystems.

Chloroplasts: Sites of Photosynthesis

- Chloroplasts are
 - the site of photosynthesis and
 - found mostly in the interior cells of leaves.
- Inside chloroplasts are interconnected, membranous sacs called **thylakoids**, which are suspended in a thick fluid called **stroma**.
- Thylakoids are concentrated in stacks called **grana**.
- The green color of chloroplasts is from **chlorophyll**, a light-absorbing pigment that plays a central role in converting solar energy to chemical energy.
- Stomata are tiny pores in leaves where
 - carbon dioxide enters and
 - oxygen exits.

The Simplified Equation for Photosynthesis

- In the overall equation for photosynthesis, notice that the reactants of photosynthesis are the waste products of cellular respiration.
- In photosynthesis,
 - sunlight provides the energy,
 - electrons are boosted "uphill" and added to carbon dioxide, and
 - sugar is produced.
- During photosynthesis, water is split into
 - hydrogen and
 - oxygen.
- Hydrogen is transferred along with electrons and added to carbon dioxide to produce sugar.
- Oxygen escapes through stomata into the atmosphere.

A Photosynthesis Road Map

- Photosynthesis occurs in two multistep stages:
 - the **light reactions** convert solar energy to chemical energy and
 - the Calvin cycle uses the products of the light reactions to make sugar from carbon dioxide.
- The initial incorporation of carbon from the atmosphere into organic compounds is called **carbon fixation**.
 - This lowers the amount of carbon in the air.

 Deforestation reduces the ability of the biosphere to absorb carbon by reducing the amount of photosynthetic plant life.

THE LIGHT REACTIONS: CONVERTING SOLAR ENERGY TO CHEMICAL ENERGY

- Chloroplasts
 - are chemical factories powered by the sun and
 - convert sunlight into chemical energy.

The Nature of Sunlight

- Sunlight is a type of energy called radiation, or electromagnetic energy.
- The distance between the crests of two adjacent waves is called a **wavelength**.
- The full range of radiation is called the **electromagnetic spectrum**.

Chloroplast Pigments

- Chloroplasts contain several pigments:
 - Chlorophyll a
 - absorbs mainly blue-violet and red light and
 - participates directly in the light reactions.
 - Chlorophyll b
 - absorbs mainly blue and orange light and
 - participates indirectly in the light reactions.
- Carotenoids
 - absorb mainly blue-green light,
 - participate indirectly in the light reactions, and
 - absorb and dissipate excessive light energy that might damage chlorophyll.
- The spectacular colors of fall foliage are due partly to the yellow-orange light reflected from carotenoids.

How Photosystems Harvest Light Energy

- Light behaves as **photons**, a fixed quantity of light energy.
- Chlorophyll molecules absorb photons.
 - Electrons in the pigment gain energy.
 - As the electrons fall back to their ground state, energy is released as heat or light.
- In the thylakoid membrane, chlorophyll molecules are organized with other molecules into photosystems.
- A **photosystem** is a cluster of a few hundred pigment molecules that function as a light-gathering antenna.
- The **reaction center** of the photosystem consists of chlorophyll *a* molecules that sit next to another molecule called a **primary electron acceptor**, which traps the light-excited electron from chlorophyll *a*.
- Another team of molecules built into the thylakoid membrane then uses that trapped energy to make
 - ATP and
 - NADPH.

How the Light Reactions Generate ATP and NADPH

- Two types of photosystems cooperate in the light reactions:
 - the water-splitting photosystem and
 - the NADPH-producing photosystem.
- The light reactions are located in the thylakoid membrane.
- An electron transport chain
 - connects the two photosystems and
 - releases energy that the chloroplast uses to make ATP.

THE CALVIN CYCLE: MAKING SUGAR FROM CARBON DIOXIDE

- The Calvin cycle
 - functions like a sugar factory within a chloroplast and
 - regenerates the starting material with each turn.
- Sugars are produced through four main steps in the Calvin cycle:
 - Carbon fixation combines CO₂ with RuBP;
 - ATP and NADPH are used to energize the carbon chains, producing G3P
 - Some G3P can exit the cycle, to produce anything in the plant;
 - Some G3P are reconfigured to produce RuBP, and the cycle can start again.