Meiosis

- An Overview of Meiosis
- The Steps in Meiosis
- The Significance of Meiosis
- Meiosis and Sex Determination

An Overview of Meiosis

- When one cell undergoes mitosis, two identical cells are formed
 - Each possesses 46 chromosomes in humans
 - 2 copies each of 23 different chromosomes
 - 2 full sets of 23 chromosomes
 - "Diploid"
 - **–**"2n"
- When a cell undergoes meiosis, unique cells are produced
 - Sperm and egg cells
 - "Gametes"
 - Each has only 23 chromosomes
 - Half the (total) normal number
 - Only one copy of each chromosome
 - One set of 23 chromosomes
 - "Haploid"

- A sperm and an egg can fuse
 - "Fertilization"
 - -23 + 23 = 46 chromosomes
- The resulting cell possesses the full human complement of 46 chromosomes
 - Diploid cell produced
 - -2 full sets of 23 chromosomes
 - 2 copies each of 23 different chromosomes

The Steps in Meiosis

- <u>Mitosis</u> involves the duplication of DNA, followed by the division of the nucleus and cell
 - Two cells are produced, with equivalent nuclear contents (equivalent division)
- <u>Meiosis</u> involves the duplication of DNA, followed by <u>two</u> sequential divisions of the nucleus and the cell

- Four cells are produced, each with reduced nuclear contents (reduction division)
- The function of meiosis is the production of sperm and/or eggs
- This happens only in reproductive organs
 - Testes in males and ovaries in females
- Meiosis is divided into phases
 - Meiosis I
 - Prophase I
 - Metaphase I
 - Anaphase I
 - Telophase I
 - -Meiosis II...
 - Prophase II
 - Metaphase II
 - Anaphase II
 - Telophase II
- Meiosis in brief
 - Meiosis I
 - Homologous chromosomes pair up and then separate
 - Two haploid cells are formed
 - Meiosis II
 - Sister chromatids of duplicated chromosomes separate
 - Four haploid cells are formed

Prophase I

- Replicated DNA condenses into discretely visible chromosomes
 - <u>Homologous chromosomes are paired</u>
 - Crossing over takes place
- Spindle begins to form
 - Microtubules ultimately connecting chromosomes to "north and south poles"
- Nuclear membrane is disassembled
- The pairing of homologous chromosomes is the first important difference between mitosis and meiosis
 - Additional differences arise as a consequence of this pairing

Metaphase I

- Chromosomes lined up on equatorial plate
 - Homologous chromosomes remain paired
- Mitotic spindle is complete
 - Chromosomes attached to the centrosomes
 - <u>Homologous chromosomes</u> attached to opposite poles

Anaphase I

- Homologous chromosomes separate
 - Shortening microtubules pull <u>homologous chromosomes</u> toward opposite poles
 - Chromosomes still consist of joined sister chromatids (duplicated)
 - Segregation is random
 - Segregation of chromosome 1 has no effect on segregation of chromosome 2

Telophase I

- Chromosomes arrive at poles
- Chromosomes unwind (decondense)
 - Clearly discernible shape is lost
- Nuclear membranes are assembled
 - Result is one cell containing two nuclei

Cytokinesis

- Protein filaments contract, cells pinch off
 - Cytoplasm and contents are divided
- The resulting cells are haploid, not diploid
 - Each has only one copy of each chromosome, all duplicated
 - One full set of 23 chromosomes is in one cell, and the other full set of 23 chromosomes is in the other cell

Meiosis II

- The cells resulting from meiosis I each undergo a second division
 - No new DNA synthesis precedes this step
- The steps of meiosis II are identical to those of mitosis
 - Sister chromatids separate

Cytokinesis

- Cytokinesis is completed a second time following meiosis II
- Results in the production of four haploid cells from a single diploid cell
 - -e.g., Four sperm cells

The Significance of Meiosis

- Meiosis results in genetic diversity in offspring
- Meiosis also results in large-scale diversity in the natural world
- Genetic diversity in offspring is the result of
 - Crossing over
 - Independent assortment of chromosomes

Crossing over

- Homologous chromosomes are paired for much of meiosis I
 - Crossing over occurs during prophase I
- Non-sister chromatids break and exchange information
 - "Hybrid" chromatids are formed
 - Have both maternal and paternal portions
- Homologous chromosomes have exchanged reciprocal portions of themselves
- <u>Each</u> chromosome packaged into a gamete contains both maternal and paternal portions
 - Genetic diversity of gametes is increased
 - Genetic diversity in offspring is increased

Independent assortment

- Chromosomes line up independently at the metaphase plate (metaphase I)
 - The orientation of chromosome 1 has no effect on the alignment of chromosome 2
 - Perhaps "maternal" chromosome 1 lines up on side "A"
 - Either the maternal or paternal chromosome 2 may line up on side "A"
 - Either the maternal or paternal chromosome 3 may line up on side "A"
 - And so on...
- Humans have 23 pair of chromosomes
 - -2^{23} different ways chromosomes could line up in meiosis
 - 8 million different ways
 - 8 million genetically different eggs
 - 8 million genetically different sperm
 - 64 trillion genetically different offspring (actually about 70 trillion)
- 64 trillion genetically different offspring that could be produced by a specific pair of people
 - This is dependent upon random segregation of chromosomes
 - This does not even include variation due to crossing over
 - Crossing over increases this number even more drastically`

The Significance of Meiosis

- Offspring produced through sexual reproduction are genetically unique
 - Identical siblings are the only exception
 - Develop from the same fertilized egg
- Sexual reproduction drastically increases genetic diversity within a species
- As a result of genetic diversity, individuals within populations vary from other
 - Some redwood trees grow a little taller than others
 - Some fish are able to dive a little deeper than others
 - Some deer are able to run a little faster than others
- This genetic diversity within populations makes evolution possible
 - Evolution acts upon variation within a population
 - Individuals with beneficial genetic traits are likely to produce more offspring than individuals lacking those traits
 - These beneficial traits will become more common in future generations
- This genetic diversity within populations makes evolution possible
 - A taller tree captures more sunlight
 - Better nourished
 - Likely to produce more offspring than others of its species
 - Its genetics will be overrepresented in the next generation
 - More taller trees will exist in the next generation

Meiosis and Sex Determination

- Human gender is determined by a pair of sex chromosomes
 - Females possess a pair of X chromosomes
 - Males possess a single X chromosome and a single Y chromosome
 - The presence of a Y chromosome that confers male gender
- The X chromosome is a fairly large chromosome
- The Y chromosome is the smallest human chromosome
- Female X chromosomes represent a pair of homologous chromosomes
- Male X and Y chromosomes are not homologous, but act as homologous chromosomes during meiosis

- In females, the homologous X chromosomes line up together during meiosis I
 - These chromosomes separate, going into different cells
- In males, the non-homologous X and Y chromosomes line up together during meiosis I as if they were homologous
 - These chromosomes separate, going into different cells
- Each egg produced by a female contains a single X chromosome
- Each sperm produced by a male possesses a single sex chromosome
 - Half of the sperm contain an X chromosome
 - These sperm will produce daughters
 - Half of the sperm contain a Y chromosome
 - These sperm will produce sons